

Centro Regional de Controle do Espaço Aéreo Sudeste

Divisão de Operações

Comissão de Performance ATM

Centro de Operações - COP

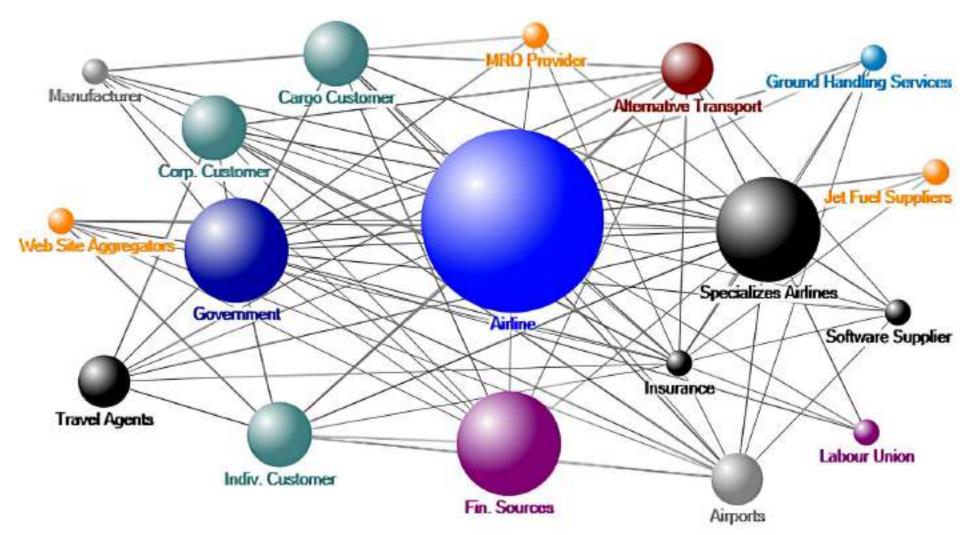
1S BCT Luis Gustavo Domingues Pereira – Centro de Operações Primeiro Sargento Especialista em Controle de Tráfego Aéreo Outubro | 2025

Aviação hoje

*

Aviação figura como vetor de vantagem socioeconômica

• No Brasil, em 2023...


Passageiros +112 milhões

Movimento de Aeronaves +2 milhões

Aviação hoje

Aviação como sistema complexo

Créditos da imagem: https://www.linkedin.com/pulse/complex-aviation-ecosystem-jack-yu/

Para contribuir com otimização, DECEA implementou o Programa SIRIUS



Melhoria contínua

Estruturas

Processos

Navegação

Projetos CEA

Créditos da imagem: https://www.linkedin.com/pulse/complex-aviation-ecosystem-jack-yu/

Aviação hoje

Melhorou?
.....Para quem?

Necessidade de avaliação de performance

Terreno fértil para aplicação de métodos científicos de análise multicritério

Gaussiano

Especialização quantitativa

Admissão de numerosas variáveis

Precisão

Robustez

Tratamento de sensibilidade

Facilidade de interpretação

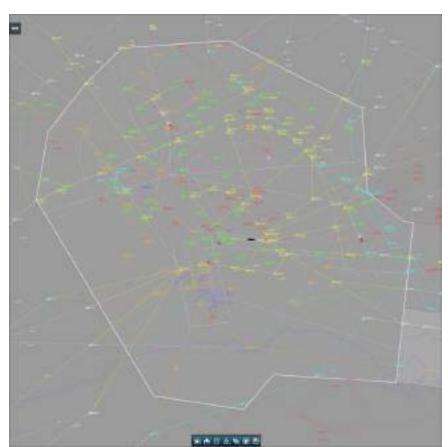
Definição de contorno entre as alternativas

Necessidade de avaliação de performance

Pesquisa de referência: Avaliação do Design de Espaço Aéreo de Istambul da perspectiva de Complexidade e Segurança Operacional

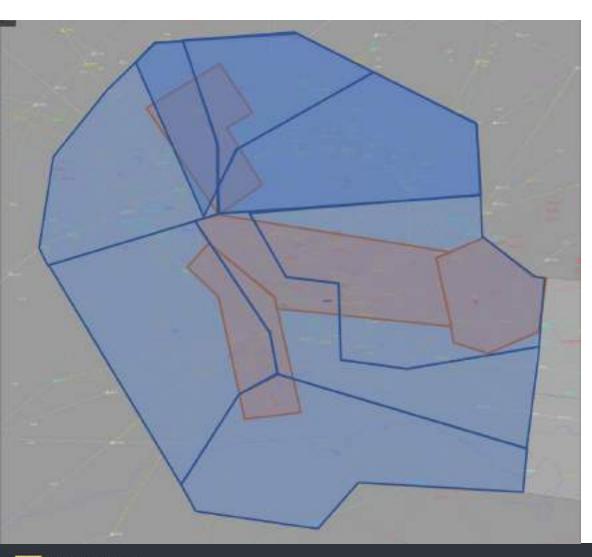
Istanbul Airspace Evaluation

Impacto da nova estrutura de EA
Point Merge System
Indicadores de complexidade
Metodologia estatística não-paramétrica
Resultados concretos
Efeitos sobre segurança operacional
Conclusões globais

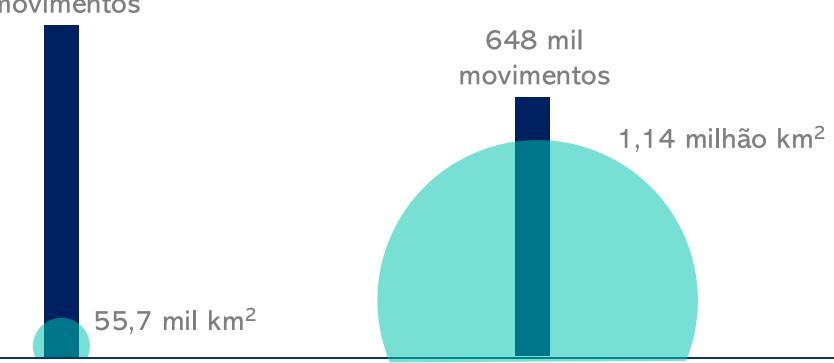


O Método AHP Gaussiano apresenta habilidade para avaliar performance de cenários de espaço aéreo?

Aplicação: avaliação da nova estrutura e circulação aérea de São Paulo – TMA-SP Neo

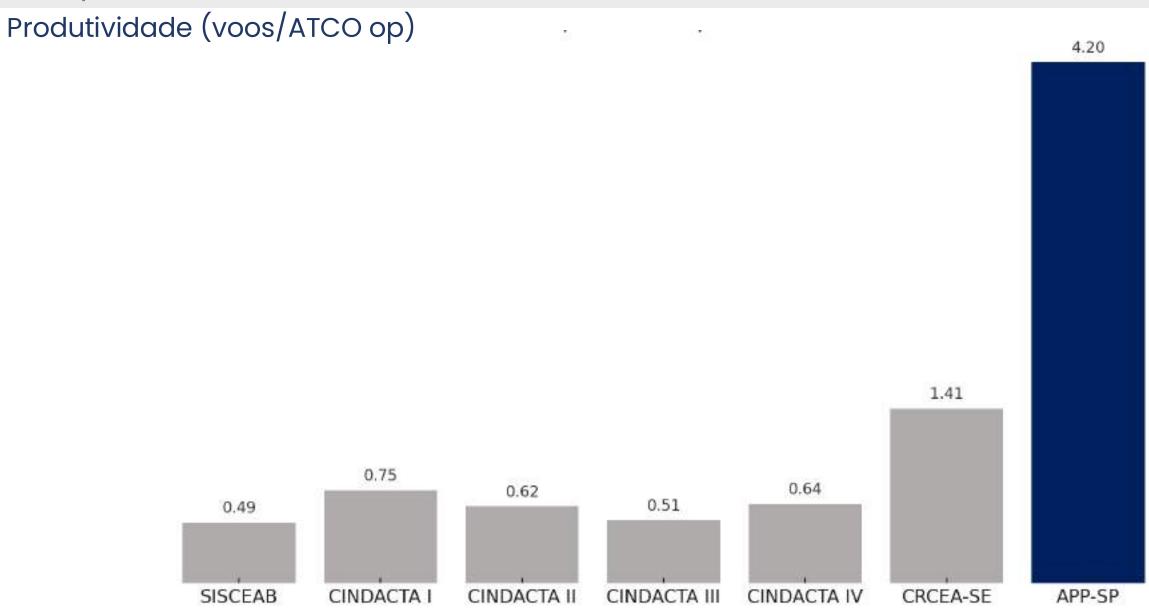


				12		
			Variaç	ő.	2000	PROPE.
70	SBXP	São Paulo	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	1	5,6%	-
20	SBWJ	Rio de Janeiro	292,991	_	2,4%	
30	SBWH	Belo Horizonte	169,509	_	13,7%	a
40	SBWR	Brasilia	158.894		0,9%	
50	SBXQ	Academia	143.067		12,3%	
60	SBWT	Curitiba	125.901	_	8,0%	
70	SBWF	Recife	111,520	_	8,4%	
80	SBXF	Florianópolis	103.852	_	8,4%	
90	SBXN	Anápolis	102.947		27,1%	
10°	SBXS	Salvador	53 53 83.866	•	3,0%	
110	SBWE	Macaé	74.086	•	-7,4%	
12°	SBWN	Manaus	65,526		10,0%	
130	SBWZ	Fortaleza	61,610	_	1,2%	
140	SBWY	Cuiabá	59.143	ī	0,7%	
15°	SBXR	Vitória	58,244	•	-0,9%	
160	SBWP	Porto Alegre	56.076		-36,9%	
170	SBWB	Belem	54,568		6,8%	
18°	SBXO	Londring	46.357		6,9%	
190	SBWG	Campo Grande	41.494	Ţ	-2,496	
20°	SBWI	Foz do Iguaçu	40.765		3,7%	
210	SBXM	Maceió	35,264	Ţ	-33,096	
22°		Boa Vista	33.781		25,1%	
230	SBXT	Natal	33.126	Ī	6,4%	
240	SBWK	Porto Seguro	32.723	_	9,3%	
25°	SBXU	Uberaba	30.131	_	5,7%	
26°	CTRES	Aldeia	29,583	¥	-13,9%	
270	SBXW	Uberlândia	29,443		-17,3%	
28°	SBWS	São Luis	24,410		3,6%	
290	SBWU	Bauru	24.328	_	3,0%	
30°	SBXD	Palmas	19.614	•	-7,496	
310	SBXA	Aracaju	17.041		13,3%	
32°	SBXG	Presidente Prudente	16.319	1	3,4%	
330	SBXE	Teresina	16.183	•	-3,3%	
340	SBWX	Santarém	14,616	•	-1,096	
35°	SBWL	Ilhéus	12.568		6,7%	
360	SBWV	Porto Velho	10.863	•	-14,896	
379	SBXK	Macapá	10.032	•	-1,8%	
380	CTRTA	Taubaté	9.730	•	-0,5%	
390	SBXJ	Marabá	8.270	•	-1,496	
40°	SBXB	Rio Branco	8.098		-1,2%	
	SBWM	Santa Maria	7.130		0,8%	
COCKER OF	CTRGW	Guaratinguetá	4.741		4,9%	

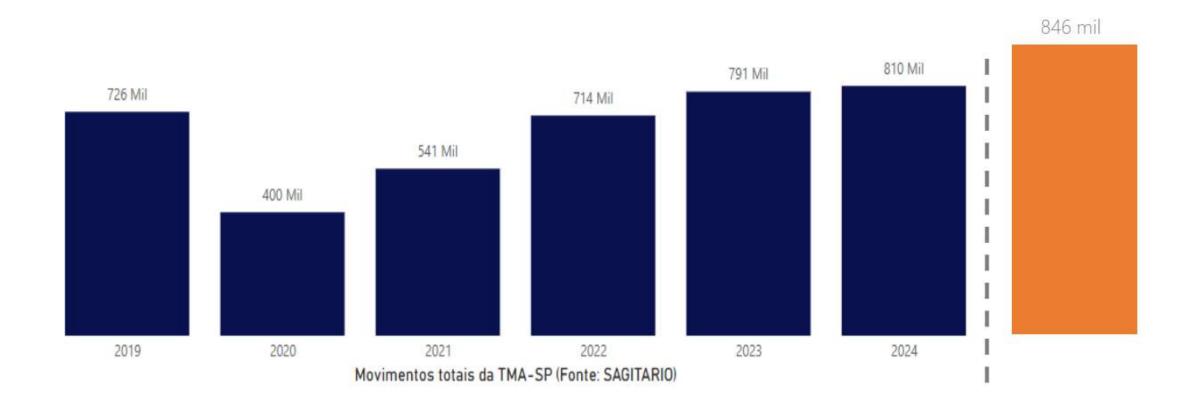

- Capacidade máxima teórica: 565 aeronaves/hora
- ➤ Nref total: 99 | Npico Total: 130
- Movimentos totais em 2024: 802 mil movimentos
 +2% (2023) | +10% (2019)
- Tempo de voo total: 250 mil horas
- Tempo médio de ARR: 32 min
- Tempo médio de saídas: 15 min

RELAÇÃO MOVIMENTOS/ÁREA

Escopo

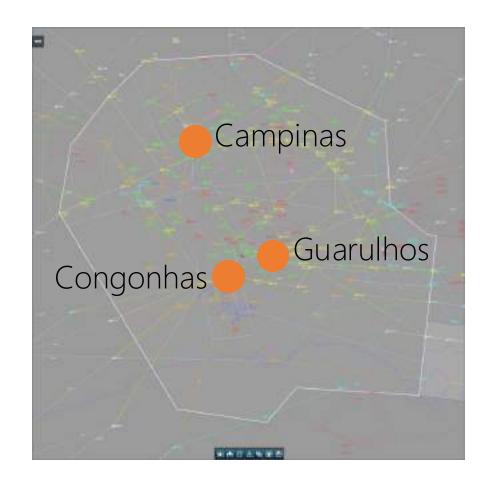


Escopo



Escopo

Projeção (SARIMA)



Escopo: Movimentos dos aeroportos de Congonhas, Guarulhos e Campinas

Tabela 1. Proporção dos movimentos dos principais aeródromos aos movimentos da TMA-SP nos anos de 2019 e 2023

Agraparta	Proporção aos mov	vimentos da TMA-SP (%)
Aeroporto	2019	2023
SBGR	40,74	36,13
SBSP	16,21	16,52
SBKP	29,64	30,09
Outros	13,41	17,26
Total	100,00	100,00

Fonte: Dados originais da pesquisa.

Medição de performance

Yariáveis iniciais: relação com a fluidez de um espaço aéreo

min

Tabela 2. Variáveis de tráfego aéreo preliminarmente consideradas para aplicação no Método

Unidade unidades					

Tempo de partida de SBKP

R	D ARR GR	Distância de chegada para SBGR	NM
S	D DEP GR	Distância de partida de SBGR	NM
T	D ARR SP	Distância de chegada para SBSP	NM
V	D DEP SP	Distância de partida de SBSP	NM
V	D ARR KP	Distância de chegada para SBKP	NM
W	D DEP KP	Distância de partida de SBKP	NM
X	D VOADA	Distância voada na TMA-SP	NM/24h
X	CONSUMO	Consumo global de combustivel	Ton/24h
Z	EMISSAO CO2	Emissão de CO2 na atmosfera	Ton/24h
AA	DIMENSAO	Dim. laterais dos esp. aér.	Km²
AB	N REF _t	Capacidade - N. de referência dos setores - total	unidades
AC	N PICO _t	Capacidade - N. pico dos setores - total	unidades
AD	CHSt	Capacidade horária de setor – total	(N Anv).h ⁻¹
AE	p TRAF	Densidade de tráfego	(N. Anv).(Km²)-1
AF	ρTV	Densidade de horas de voo	Horas de voo.(Km²) ⁻¹
AG	POP	Densidade operacional	((H voo).(N Anv) ⁻¹).(Km ²) ⁻¹
AH	ID ESP	Índice de esperas	N. de esperas./1000 voos)1

Fonte: Dados originais da pesquisa. As variáveis foram identificadas por letras visando evitar inconsistências processuais caso durante o processo fosse necessário inseri-las em modelagens uni ou multivariadas

T DEP KP

Medição de performance

➤ Base de dados: registros de movimentos de aeronaves na TMA-SP - 2019 e 2023

None da Origem 💌	DATAORIGINAL *	DATAREAL *	HORA .	Mot *	INDICATIVO *	TIPO .	ELECTIVE STREET, CO.	 ESTERA 	* 55R *	VELOCIDADE	· ADEP ·	60/61	· ADES ·	FCHG *	HCHG *	FLOHG *	FSID *	HSID *	FLSID *	SETOR
AGRIANO 980421be	08/04	00/04/2021	1828	č	PPFOY	TRA	BE10	1	A3355	N0180	SEGW	1740	SBRP	ENTIT	1820	140				512
AGITARIO 300523 bet	10/05	30/05/2021		ě	TAMA4745	ARR	A330	M	A3616	N0450	SBGR	2114	SHIR	EDMUS	2200	260				T5
AGITARIO 25062168	25/06	25/06/2021		è	PTVLX	ARR	9474	t	A4316	N0001	SBALL	1620	SBSP	DALEK	1640	130				T4
AGRARIO 10072168	10/07	10/07/2021	17:50	e	PROBLE	ARR	8620	T.	A7470	N0250	SWEG	1749	SSGR	LITON	1813	270				713
AGRARIO 18072021 par		1505/5021		c	BOV736	ARR	0738	M	A3564	N0454	SLVR	1450	SNGR	ZARES	1422	210				T13
AGITARIO MORZILINE	90,00	06/08/2021		c	TAM3253	ARR	A320	м	A3667	N0001	SECT	1634	SBGR	BLOCIE	1630	290				T13
AGITARIO 060621tes	30,00	06/08/2021	20:18	e	TAMBORD	ARR	A320	м	A3257	N0001	SBRU	2017	SBGR	EDMUS	2032	280				TO
AGITARIO 100621 tot	10/08	10/08/2021	2312	c	TAMB081	ARR	A320	м	A5306	N04S0	SBFB	2311	SBGR	ZARES	2312	210				Tt3
ABITANO_00102158	09/10	08/10/290/1	1807	c	FTLOM	ANS	PC34	t.	Asatta	MODEL	SBN	1808	SSIH	MANLO	1610	520				DB
AGITARIO 151021tvt	15/10	15/10/2021	1955	6	TAM9000	ARR	A319	м	A3640	N0449	SEGR	1955	SØGR	ZARES	1955	260				TU
AGRIANO_161021 bit	16/10	18/10/2021	0004	c	GLO1459	ARR	8738	м	A3527	N0001	58CG	0004	SBGR	BURDE	0003	250				T13
AGRARIO 201021 bet	20/10	20/10/2021	0803	c	AZU2046	ARR	AT76	10	A3471	N0001	SEVT	0802	SEKP	EDMUS	0805	120				DB
AGITARIO_301021.set	30/10	30/10/2021	0830	A	CMP750	ARR	839M	M	AD157	N0456	MPFO	0830	SBGR	ZARES	0835	350				T13
AGITARIO_111021tes	31/10	21/10/2021	2250	×	CMPTOT	ARR	839M	М	A0000	N0462	MPSO	2000	SIGR	ZARIS	2004	210				TIL
AGITARIO_091121.txt	09/11	09/11/2021	1241	c	PRMP)	TRA	BE20	t	A4674	M0200	SDCO	1220	SBSR	KIGES	1139	160	UTIOT	1149	170	13
AGITARIO 171123 txt	17/11	17/11/2021	1224	c	PRSCM	ARR	8E50	L	A4101	N0001	SBAU	1223	S8SP.	UTLOT	1225	100				13
AGITARIO_171121.bst	17/11	17/11/2021	1440	c	AZU4876	ARR	AT76	L	A4544	NOOQ1	SBSR	1439	SBKP	unar	1450	150				T13
AGITARIO_131221.txt	13/12	13/12/2021	0852	e	PRUNI	ARR	8E20	£.	A4256	N0250	5810	0840	SBGR	ASEIA	0852	230				T13
AGRARIO_230524nm	22,05	21/05/2024	215600	Δ	PTR2231	ARR	A175	M	A1126	MODES	SEDM	2155	SIESP		2230					
AGITARIO_2507241xt	25/07	25/07/2024	194600	A	PSOFI	TRA	E35P	м	A4535	M0200	SDFW	1845	SBRJ		1940		EGUTO	1945	75	
AGRARIO_MITZ4txt	20/11	28/11/2024	1809100	A.	PTCDD	ARR	8635	t	A3430	N0140	SBUN	1809	59GR		1856	90				
ASITARIO_261224_parts.	26/12	26/12/2024	1457:00	A	PREIC	ARR	2222	M	A3571	N0250	SBSI	1455	SRSJ		1331	120				
AGITARIO_281224tes	28/12	28/12/2024	1603:00	A	PRAHM	TRA	8E20	4	A3741	N0200	SBRJ	1600	SDAL		1700		DORLU	1700	0	
AGITARIO_070121.tvt	67/61	07/01/2021	1503	A	PRIEL.	ARR	ESOP.	10	A3324	N0200	SDFW	1415	SSSI		1500					15
AGITARIO_120221 bit	12/02	12/02/2021	17/22	A	PPARO	DEP	PC12	t.	A4672	N0240	SBSI	1700	SRSP				SBSP	1712	100	ij.
AGITARIO_1302211xt	13/62	13/02/2021	17.10	Ä	PPWIZ	ARR	SF50	i.	A2013	N0180	SDAG	1430	SBMT		1510	70				813
AGITARIO_200221 bit	50/05	20/02/2021	17:48	A	PROUZ	TRA	BES8	t	A3510	N0170	SDUB	1700	SBSR		1748			1719	0	\$8
AGITARIO_160321.bst	16/03	16/03/2021	1806	A	PRIFGE	DEP	BESL.	L	A0251	N0000	SBO	1115	SOPA						170	VI.
AGRIANO_170521bit	17/05	17/05/2021	1032	A	PREAT	DEP	C208		A4005	N0150	58,0	1610	SRID				SEID	1652	0	VI
AGRIANO_1905Z1.txt	19/05	19/05/2021	17/48	A	PPRA	DEP	E550	М	A3431	N0250	SBST	1800	SBUH					1800	150	51
AGITARIO_3105211m	31/05	91/05/2021	1535	A	PPMSL	ARR	8E20	E .	A3312	M0270	SELO	1528	SBSP		1544	210				T5
AGITARIO_1406215st	14/06	14/06/2021	14:17	A	PRESI	VFR	PERC	t.	A0129	N0130	SB/0	1500	SBID							VFR
AGRAND_1606215x	16,06	19/06/2027	1821	A	PRODL	DEP	BL17	11	A4575	N0150	5857	1800	SDBN				SDIN	1844	80	Tä
AGRARIO_180623.tut	18/06	115/00/2015.1	1723	A	GUARAG2	DEP	ESOP	t	A4350	N0360	SBSI	1730	SBBR				UKBEV	1746	380	T8
AGITARIO_200621 bit	50/06	53/06/5851	1942	A	FIMML	DEP	TBM7	t	A4307	N0290	SE/O	1930	SBUD					1945	240	13
AGITARIO 010721tes	01,07	01/07/2021	2005	A	PERCN	TRA	CS6X	M	A3556	N0250	SDPW	2000	SSSP		2018	110	SRSP	2018	110	TS

Medição de performance

Base de dados

Extrato SAGITARIO 01.01.2023 a 31.12.2023 Extrato MONTREAL KPI e IDBR conforme MCA 100-22

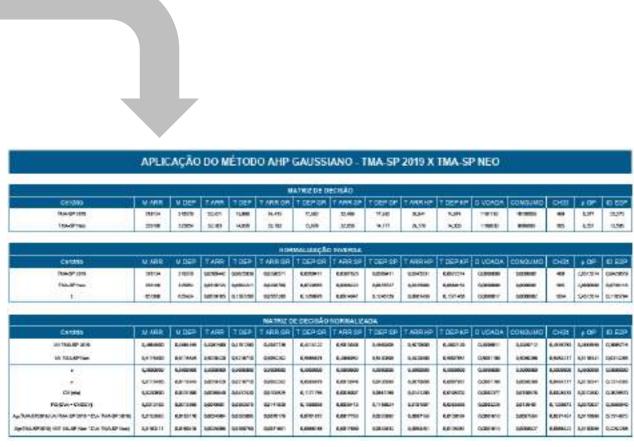
Simulação em tempo acelerado TAAM

Transformação, Carregamento e Análise Descritiva Power Bl

Excel com VBA

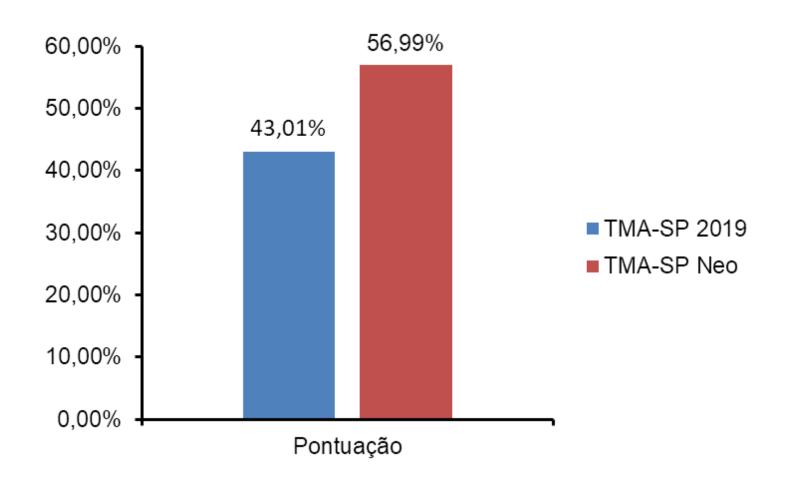
Análise Diagnóstica

Python, com bibliotecas:


- -Pandas séries temporais
- -Numpy grande volume de dados
- -Matplotlib visualização de dados
- -Sklearn regressões
- -Statsmodels qualidade dos modelos de regressão

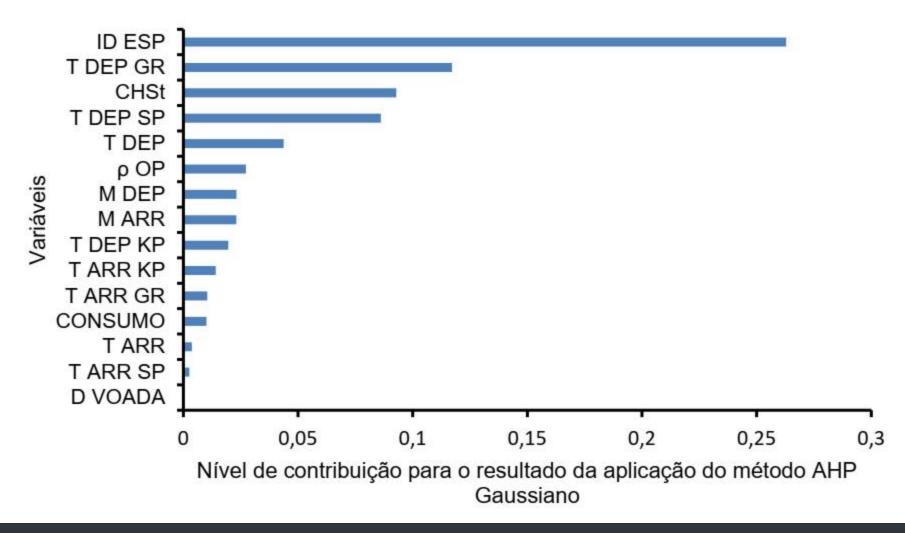
Estruturação: Dashboard e planilha eletrônica

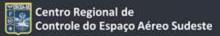
AHP Gaussiano


APLICAÇÃO DO MÉTODO AHP-GAUSSIANO - TMA-SP 2019 X TMA-SP NEO

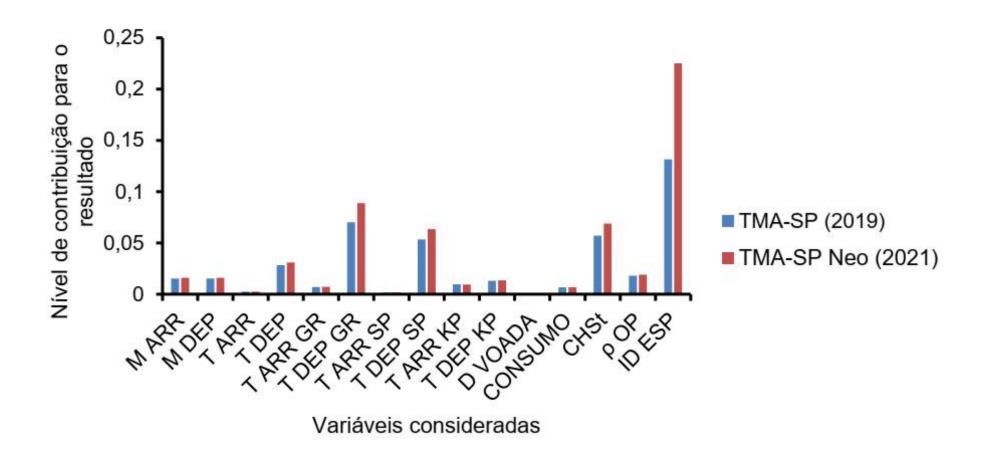
MATRIZ DE DECISÃO

Cenário	M ARR	M DEP	T ARR	T DEP	T ARR GR	T DEP GR	T ARR SP	T DEP SP	T ARR KP	T DEP KP	D VOADA	CONSUMO	CHSt	ρΟΡ	ID ESP
TMA-SP 2019	318134	310370	32,421	15,999	34,415	17,562	32,486	17,562	28,941	14,874	1161182	10100035	469	0,377	23,273
TMA-SP Neo	333166	325054	32,183	14,658	33,703	13,878	32,656	14,777	29,770	14,303	1160630	9898893	565	0,357	13,585
NORMALIZAÇÃO INVERSA															
Cenário	M ARR	M DEP	T ARR	T DEP	T ARR GR	T DEP GR	T ARR SP	T DEP SP	T ARR KP	T DEP KP	D VOADA	CONSUMO	CHSt	ρOP	ID ESP
TMA-SP 2019	318134	310370	0,0308442	0,0625039	0,0290571	0,0569411	0,0307825	0,0569411	0,0345531	0,0672314	0,0000009	0,0000001	469	2,6513514	0,0429679
TMA-SP Neo	333166	325054	0,0310723	0,0682221	0,0296709	0,0720565	0,0306222	0,0676727	0,0335909	0,0699154	0,0000009	0,0000001	565	2,8000000	0,0736116
Σ	651300	635424	0,0619165	0,1307260	0,0587280	0,1289976	0,0614047	0,1246139	0,0681439	0,1371468	0,0000017	0,0000002	1034	5,4513514	0,1165794
					MATRIZ	Z DE DECISÃO NO	RMALIZADA								
Cenário	M ARR	M DEP	T ARR	T DEP	T ARR GR	T DEP GR	T ARR SP	T DEP SP	T ARR KP	T DEP KP	D VOADA	CONSUMO	CHSt	ρOP	ID ESP
VN TMA-SP 2019	0,4884600	0,4884455	0,4981580	0,4781290	0,4947738	0,4414122	0,5013048	0,4569405	0,5070600	0,4902149	0,4998811	0,4949712	0,4535783	0,4863659	0,3685715
VN TMA-SP Neo	0,5115400	0,5115545	0,5018420	0,5218710	0,5052262	0,5585878	0,4986952	0,5430595	0,4929400	0,5097851	0,5001189	0,5050288	0,5464217	0,5136341	0,6314285
υ	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000	0,5000000
σ	0,0115400	0,0115545	0,0018420	0,0218710	0,0052262	0,0585878	0,0013048	0,0430595	0,0070600	0,0097851	0,0001189	0,0050288	0,0464217	0,0136341	0,1314285
CV (σ/υ)	0,0230800	0,0231090	0,0036840	0,0437420	0,0104525	0,1171756	0,0026097	0,0861189	0,0141200	0,0195702	0,0002377	0,0100576	0,0928433	0,0272682	0,2628570
$FG (CVn = CV/\Sigma CV)$	0,0313193	0,0313586	0,0049991	0,0593575	0,0141839	0,1590059	0,0035413	0,1168624	0,0191607	0,0265566	0,0003226	0,0136481	0,1259873	0,0370027	0,3566940
AgcTMA-SP2019(VN TMA-SP 2019 * CVn TMA-SP 2019)	0,0152982	0,0153170	0,0024904	0,0283805	0,0070178	0,0701872	0,0017753	0,0533992	0,0097156	0,0130184	0,0001613	0,0067554	0,0571451	0,0179968	0,1314672
AgcTMA-SP2019(VNT MA-SP Neo * CVn TMA-SP Neo)	0,0160211	0,0160416	0,0025088	0,0309769	0,0071661	0,0888188	0,0017660	0,0634632	0,0094451	0,0135381	0,0001613	0,0068927	0,0688422	0,0190058	0,2252268


Resultado global: superioridade da TMA-SP Neo ~13 pontos percentuais de vantagem



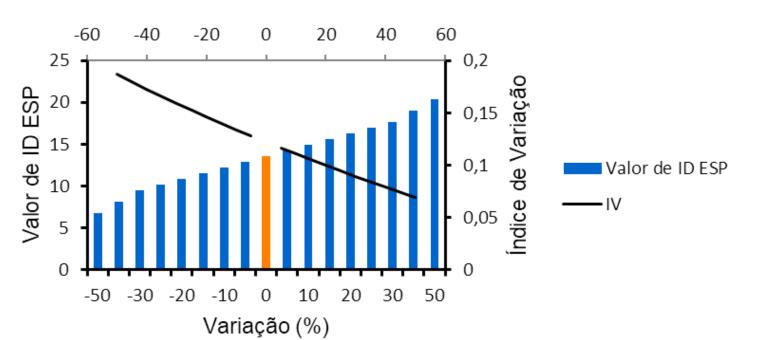
TMA-SP Neo ~13 pontos percentuais de vantagem


Contribuição de variáveis: diferença entre os valores normalizados

~ Contribuição comparada de variáveis: manutenção do ranqueamento

$$IV_i = \frac{\Delta_{Pi}}{\Delta_{\%i}}$$

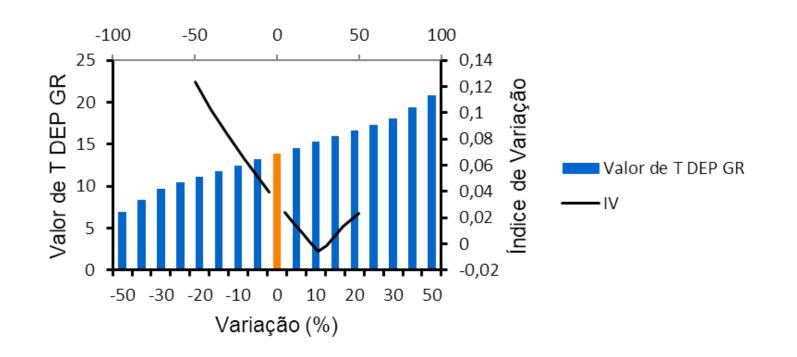
IV₁: índice de variação


ΔP_i: diferença entre a pontuação resultante e a estimada

Δ%_i: Variação aplicada (simulada)

Análise de sensibilidade: simulação de variação univariada das 5+

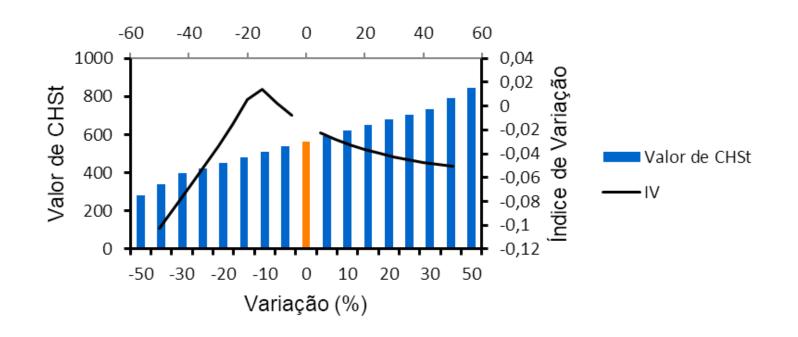
• ID ESP — 13,59 esperas/1000 voos



- Maior influência no resultado global
- Variação inversa
- IV de 0,12 (σ 0,03)
- Para anular vantagem, o valor deveria ser de 40,75 (pouco provável)
- Coerência operacional

Análise de sensibilidade: simulação de variação univariada das 5+

• T DEP GR – 13,88 min

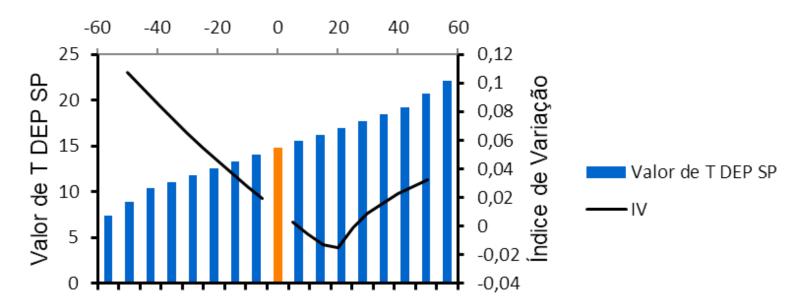


- Bivariada
- IV de -0,058 até ~15%; 0,006 após
- Valor próximo ao vale
- Para anular vantagem, o valor deveria ser de 41,63 min (pouco provável)
- Coerência operacional

Análise de sensibilidade: simulação de variação univariada das 5+

• CHS_t – 565 aeronaves

- Bivariada
- IV de 0,028 até ~-10%; -0,034 após
- Valor próximo ao pico
- Para anular vantagem, o valor deveria ser de 248 ou 1695 (pouco provável)
- Coerência operacional


Análise de sensibilidade: simulação de variação univariada das 5+

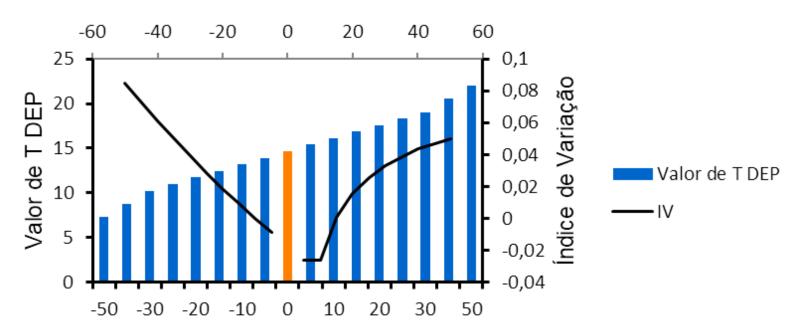
• T DEP SP – 14,78 min

-10

Variação (%)

10

30


- Bivariada
- IV de -0,039 até ~15%; -0,009 após
- Valor próximo ao vale
- Para anular vantagem, o valor deveria ser de 41,33 min (pouco provável)
- Coerência operacional

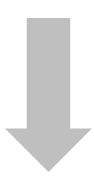
-50 -30 -20

Análise de sensibilidade: simulação de variação univariada das 5+

• T DEP – 14,66 min

Variação (%)

- Bivariada
- IV de -0,029 até ~5%; -0,023 após
- Valor bem próximo ao vale
- Para anular vantagem, o valor deveria ser de 13,97 min (pouco provável)
- Coerência operacional



> Complementariedade: abordagens diferentes mas interinfluentes

Abordagem de Mutlu (2021)

AHP Gaussiano com as variáveis selecionadas

- Complexidade
- Segurança operacional

• Eficiência

O Método AHP Gaussiano figura como uma escolha eficaz para a avaliação de performance em cenários de espaço aéreo, sendo uma ferramenta valiosa tanto para comparações entre diferentes configurações quanto para subsidiar processos decisórios de forma mais fundamentada e assertiva

Available online at www.sciencedirect.com

ScienceDirect

Procedor Computer Science 285 (2021) 439-446

www.clsgylor.com/linesto/proced to

12th International Conference on Information Technology and Quantitative Management (ITQM 2025)

Application of the Gaussian AHP Method for Airspace Performance Assessment

Luis Gustavo Domingues Pereira **, Thiago Gentil Ramires *, Miguel Ángelo Lellis Moreira *, Marcos dos Santos **, Bruno Pereira Diniz *

> "Surfaces Regional Arripoce Cristral Curier, See Frails, SP 03:57-005, Brazil "Federal Schoological University of Persons, Ayucarana, PR 38215-460, Brazil "Guerna-Federal University, Wheres, AJ 14716-760, Brazil "Military Institute of Engineering, Discs, AJ 21286-778, Brazil "Federal University, of Complete Greatle, Congress Greatle, PR 26215-265, Brazil

Abstract

This research applied file Convoint, ASP Method to comparatively evaluate the performance of the stripute structure of the Life Paulo Farminal Control Area implemented in 1001 (TMA-S9 Nee) compared to the previous version. It is justified by the easeful measure apticularities given the growth in Genand, siming at improvements in the efficiency of flight operations and all mefficients. The objective was to verify the method's applicability in quantifying the advantages of the new configuration, using industries such as flight time, operational density, sector capacity, and first consumption. The methodology involved processing at movement flow from 1009 and 2023 and in application in the method. Followed by analysis of the contribution and sensitivity of the variables. The results indicated superior performance of TMA-S9 Nee, with reduced weiging times, flight times, and greater striptore capacity. In addition, they confirmed the effectiveness of the Constant ASIP Method in evaluating global performance and intentifying the indicates of each variable, evidencing in preservation support decision making processes in the

© 1925 The Authors, Dubbished by Elsevier B.V.

This is an open access which under the CC BY-DC-ND liberted (http://cces/occustors.org/Lennes/by-tr-nd/4-f).

Personness under negotias being of the scientific coroninate of the 12th International Conference on Information Technology and Quantitative Minappendent.

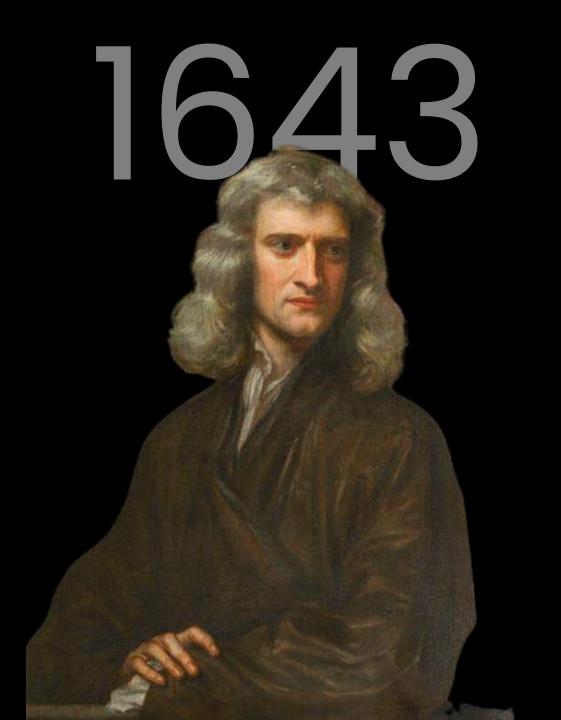
Depote the Air Traffix Management ATM Performance Efficiency Optimization Multiprotein Decision Multiple

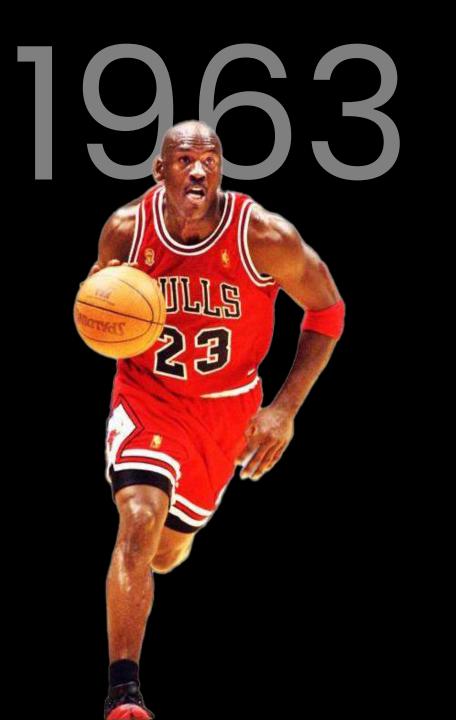
*Corresponding matter, Tel.: =0.000-000 : ing. =0.000-000-0000 . E-well address: grassrologin/Egentil com

isto-one & 3025 The Authors, Published by Elsevier B.V.

This is an open assess article under the CC BY-NC-ND because (https://www.ncom.org/homes/hy-oc.nd/1.0)
Preserves under responsibility of the assessible controllers of the 12th between and Condensate on Information Technology and Quantitative Management

10.1005/j-penes, 2025-08-050


Aplicações futuras



> Projeto VIRACO2POS - Otimização do espaço aéreo relacionado a SBKP

Projeto IFR SBMT – Análises preliminares e de pós implementação

~ ..

Obrigado!

Divisão de Operações Centro de Operações Controle de Aproximação de São Paulo CP-ATM — APP-SP

Centro Regional de Controle do Espaço Aéreo Sudeste

